Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.07.12.23292451

RESUMEN

Background. Defining healthcare facility catchment areas is a key step in predicting future healthcare demand in epidemic settings. Forecasts of hospitalisations can be informed by leading indicators measured at the community level. However, this relies on the definition of so-called catchment areas, or the geographies whose populations make up the patients admitted to a given hospital, and which are often not well-defined. Little work has been done to quantify the impact of hospital catchment area definitions on healthcare demand forecasting. Methods. We made forecasts of Trust-level hospital admissions using a scaled convolution of local cases (as defined by the hospital catchment area) and a delay distribution. Hospital catchment area definitions were derived from either simple heuristics (in which people are admitted to their nearest hospital or any nearby hospital) or historical admissions data (all emergency or elective admissions in 2019, or COVID-19 admissions), plus a marginal baseline definition based on the distribution of all hospital admissions. We evaluated predictive performance using each hospital catchment area definition using the Weighted Interval Score (WIS) and considered how this changed by the length of the predictive horizon, the date on which the forecast was made, and by location. We also considered the change, if any, on the relative performance of each definition in retrospective vs. real-time settings, or at different spatial scales. Results. The choice of hospital catchment area definition affected the accuracy of hospital admission forecasts. The definition based on COVID-19 admissions data resulted in the most accurate forecasts at both a 7- and 14-day horizon, and was one of the top two best-performing definitions across forecast dates and locations. The nearby heuristic also performed well, but less consistently than the COVID-19 data definition. The marginal distribution baseline, which did not include any spatial information, was the lowest-ranked definition. The relative performance of the definitions was larger when using case forecasts compared to future observed cases. All results were consistent across spatial scales of the catchment area definitions. Conclusions. Using catchment area definitions derived from context-specific data can improve local-level hospital admissions forecasts. Where context-specific data is not available, using catchment areas defined by carefully-chosen heuristics are a sufficiently-good substitute. There is clear value in understanding what drives local admissions patterns, and further research is needed to understand the impact of different catchment area definitions on forecast performance where case trends are more heterogeneous.


Asunto(s)
COVID-19
2.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2022.12.02.22282935

RESUMEN

Short-term forecasts can provide predictions of how an epidemic will change in the near future and form a central part of outbreak mitigation and control. Renewal-equation based models are increasingly popular. They infer key epidemiological parameters from historical epidemiological data and forecast future epidemic dynamics without requiring complex mechanistic assumptions. However, these models typically ignore interaction between age-groups, partly due to challenges in parameterising a time varying interaction matrix. Social contact data collected regularly by the CoMix survey during the COVID-19 epidemic in England, provide a means to inform interaction between age-groups in real-time. We developed an age-specific forecasting framework and applied it to two age-stratified time-series: incidence of SARS-CoV-2 infection, estimated from a national infection and antibody prevalence survey; and, reported cases according to the UK national COVID-19 dashboard. Jointly fitting our model to social contact data from the CoMix study, we inferred a time-varying next generation matrix which we used to project infections and cases in the four weeks following each of 29 forecast dates between October 2021 and November 2022. We evaluated the forecasts using proper scoring rules and compared performance with three other models with alternative data and specifications alongside two naive baseline models. Overall, incorporating age-interaction improved forecasts of infections and the CoMix-data-informed model was the best performing model at time horizons between two and four weeks. However, this was not true when forecasting cases. We found that age-group-interaction was most important for predicting cases in children and older adults. The contact-data-informed models performed best during the winter months of 2020 - 2021, but performed comparatively poorly in other periods. We highlight challenges regarding the incorporation of contact data in forecasting and offer proposals as to how to extend and adapt our approach, which may lead to more successful forecasts in future.


Asunto(s)
COVID-19
3.
Katharine Sherratt; Hugo Gruson; Rok Grah; Helen Johnson; Rene Niehus; Bastian Prasse; Frank Sandman; Jannik Deuschel; Daniel Wolffram; Sam Abbott; Alexander Ullrich; Graham Gibson; Evan L Ray; Nicholas G Reich; Daniel Sheldon; Yijin Wang; Nutcha Wattanachit; Lijing Wang; Jan Trnka; Guillaume Obozinski; Tao Sun; Dorina Thanou; Loic Pottier; Ekaterina Krymova; Maria Vittoria Barbarossa; Neele Leithauser; Jan Mohring; Johanna Schneider; Jaroslaw Wlazlo; Jan Fuhrmann; Berit Lange; Isti Rodiah; Prasith Baccam; Heidi Gurung; Steven Stage; Bradley Suchoski; Jozef Budzinski; Robert Walraven; Inmaculada Villanueva; Vit Tucek; Martin Smid; Milan Zajicek; Cesar Perez Alvarez; Borja Reina; Nikos I Bosse; Sophie Meakin; Pierfrancesco Alaimo Di Loro; Antonello Maruotti; Veronika Eclerova; Andrea Kraus; David Kraus; Lenka Pribylova; Bertsimas Dimitris; Michael Lingzhi Li; Soni Saksham; Jonas Dehning; Sebastian Mohr; Viola Priesemann; Grzegorz Redlarski; Benjamin Bejar; Giovanni Ardenghi; Nicola Parolini; Giovanni Ziarelli; Wolfgang Bock; Stefan Heyder; Thomas Hotz; David E. Singh; Miguel Guzman-Merino; Jose L Aznarte; David Morina; Sergio Alonso; Enric Alvarez; Daniel Lopez; Clara Prats; Jan Pablo Burgard; Arne Rodloff; Tom Zimmermann; Alexander Kuhlmann; Janez Zibert; Fulvia Pennoni; Fabio Divino; Marti Catala; Gianfranco Lovison; Paolo Giudici; Barbara Tarantino; Francesco Bartolucci; Giovanna Jona Lasinio; Marco Mingione; Alessio Farcomeni; Ajitesh Srivastava; Pablo Montero-Manso; Aniruddha Adiga; Benjamin Hurt; Bryan Lewis; Madhav Marathe; Przemyslaw Porebski; Srinivasan Venkatramanan; Rafal Bartczuk; Filip Dreger; Anna Gambin; Krzysztof Gogolewski; Magdalena Gruziel-Slomka; Bartosz Krupa; Antoni Moszynski; Karol Niedzielewski; Jedrzej Nowosielski; Maciej Radwan; Franciszek Rakowski; Marcin Semeniuk; Ewa Szczurek; Jakub Zielinski; Jan Kisielewski; Barbara Pabjan; Kirsten Holger; Yuri Kheifetz; Markus Scholz; Marcin Bodych; Maciej Filinski; Radoslaw Idzikowski; Tyll Krueger; Tomasz Ozanski; Johannes Bracher; Sebastian Funk.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2022.06.16.22276024

RESUMEN

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models past predictive performance. Results: Over 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 84% of participating models forecasts of incident cases (with a total N=862), and 92% of participating models forecasts of deaths (N=746). Across a one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two weeks.


Asunto(s)
COVID-19 , Muerte , Enfermedades Transmisibles
4.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.10.18.21265046

RESUMEN

Background: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. Methods: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all, and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the Weighted Interval Score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. Results: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. Conclusions: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings.


Asunto(s)
COVID-19
5.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.10.18.20214585

RESUMEN

The time-varying reproduction number (Rt: the average number secondary infections caused by each infected person) may be used to assess changes in transmission potential during an epidemic. Since new infections usually are not observed directly, it can only be estimated from delayed and potentially biased data. We estimated Rt using a model that mapped unobserved infections to observed test-positive cases, hospital admissions, and deaths with confirmed Covid-19, in seven regions of England over March through August 2020. We explored the sensitivity of Rt estimates of Covid-19 in England to different data sources, and investigated the potential of using differences in the estimates to track epidemic dynamics in population sub-groups. Our estimates of transmission potential varied for each data source. The divergence between estimates from each source was not consistent within or across regions over time, although estimates based on hospital admissions and deaths were more spatio-temporally synchronous than compared to estimates from all test-positives. We compared differences in Rt with the demographic and social context of transmission, and found the differences between Rt may be linked to biased representations of sub-populations in each data source: from uneven testing rates, or increasing severity of disease with age, seen via outbreaks in care home populations and changing age distributions of cases. We highlight that policy makers should consider the source populations of Rt estimates. Further work should clarify the best way to combine and interpret Rt estimates from different data sources based on the desired use.


Asunto(s)
COVID-19 , Muerte
6.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.09.02.20186502

RESUMEN

As several countries gradually release social distancing measures, rapid detection of new localised COVID-19 hotspots and subsequent intervention will be key to avoiding large-scale resurgence of transmission. We introduce ASMODEE (Automatic Selection of Models and Outlier Detection for Epidemics), a new tool for detecting sudden changes in COVID-19 incidence. Our approach relies on automatically selecting the best (fitting or predicting) model from a range of user-defined time series models, excluding the most recent data points, to characterise the main trend in an incidence. We then derive prediction intervals and classify data points outside this interval as outliers, which provides an objective criterion for identifying departures from previous trends. We also provide a method for selecting the optimal breakpoints, used to define how many recent data points are to be excluded from the trend fitting procedure. The analysis of simulated COVID-19 outbreaks suggest ASMODEE compares favourably with a state-of-art outbreak-detection algorithm while being simpler and more flexible. We illustrate our method using publicly available data of NHS Pathways reporting potential COVID-19 cases in England at a fine spatial scale, for which we provide a template automated analysis pipeline. ASMODEE is implemented in the free R package trendbreaker.


Asunto(s)
COVID-19
7.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.08.21.20167965

RESUMEN

Background School closures are a well-established non-pharmaceutical intervention in the event of infectious disease outbreaks, and have been implemented in many countries across the world, including the UK, to slow down the spread of SARS-CoV-2. As governments begin to relax restrictions on public life there is a need to understand the potential impact that reopening schools may have on transmission. Methods We used data provided by the UK Department for Education to construct a network of English schools, connected through pairs of pupils resident at the same address. We used the network to evaluate the potential for transmission between schools, and for long range propagation across the network, under different reopening scenarios. Results Amongst the options evaluated we found that reopening only Reception, Year 1 and Year 6 (4-6 and 10-11 year olds) resulted in the lowest risk of transmission between schools, with outbreaks within a single school unlikely to result in outbreaks in adjacent schools in the network. The additional reopening of Years 10 and 12 (14-15 and 16-17 year olds) resulted in an increase in the risk of transmission between schools comparable to reopening all primary school years (4-11 year olds). However, the majority of schools presented low risk of initiating widespread transmission through the school system. Reopening all secondary school years (11-18 year olds) resulted in large potential outbreak clusters putting up to 50% of households connected to schools at risk of infection if sustained transmission within schools was possible. Conclusions Reopening secondary school years is likely to have a greater impact on community transmission than reopening primary schools in England. Keeping transmission within schools limited is essential for reducing the risk of large outbreaks amongst school-aged children and their household members.

8.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.06.18.20134858

RESUMEN

Estimation of the effective reproductive number, Rt, is important for detecting changes in disease transmission over time. During the COVID-19 pandemic, policymakers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make methodological recommendations. For near real-time estimation of Rt, we recommend the approach of Cori et al. (2013), which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis (2004), are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for some retrospective analyses. We advise against using methods derived from Bettencourt and Ribeiro (2008), as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. A challenge common to all approaches is reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA